

Universidade Federal do Triângulo Mineiro Instituto de Ciências Exatas Naturais e Educação Licenciatura em Matemática PET - Matemática

FUNÇÕES

Uberaba, MG 2019

Figura 1 - Diagrama de Venn	5
Figura 2 - Plano Cartesiano	8
Figura 3 - Pares ordenados no plano	10
Figura 4 - Gráfico da função g(x)=x+1	10
Figura 5 - Injetividade de Funções	11
Figura 6 - Sobrejetividade de Funções	11
Figura 7 - Diagrama de Função Composta	12
Figura 8 – Função Quadrática – Concavidade para cima	15
Figura 9 - Função Quadrática - Concavidade para baixo	15
Figura 10 - Gráfico da Função Exponencial	17
Figura 11 - Gráfico da Função Logarítmica	19
Figura 12 - Gráfico de uma Função afim	20
Figura 13 - Gráfico de uma Função Modular	20

LISTA DE QUADROS

Quadro 1 - Valor	es que g(x) assum	ne no ponto x	9
------------------	-------------------	---------------	---

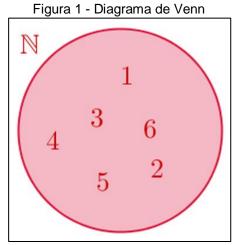
1.	CONJUNTOS	5
	1.1 RELAÇÃO ENTRE OBJETO E CONJUNTO	5
	1.2 OPERAÇÕES ENTRE CONJUNTOS	6
	1.3 CONJUNTOS NUMÉRICOS	7
2.	SISTEMA CARTESIANO ORTOGONAL DE COORDENADAS	8
3.	FUNÇÕES	9
	3.1 Gráfico de uma função	9
3.2	classificação de funções	10
	3.2.1 Função Injetora	11
	3.2.2 Função sobrejetora	11
	3.2.3 Função bijetora	12
	3.2.4 Função inversa	12
	3.2.5 Função composta	12
3.3	Função afim	13
	3.3.1 Zero de uma função afim	14
	3.3.2 Coeficiente de uma função afim	14
3.4	Função quadrática	14
	3.4.1 Coeficientes de uma função quadrática	14
	3.4.2 Zeros de uma função quadrática	16
	3.4.3 Valor máximo ou mínimo de uma função quadrática	17
3.5	Função exponencial	17
3.6	Função logarítmica	18
3.7	Função modular	
	EXERCÍCIOS	21
	REFERÊNCIAS	24

1. CONJUNTOS

A ideia de **conjunto** é uma noção primitiva e aparece intuitivamente quando consideramos um agrupamento qualquer.

Um conjunto é formado por objetos, chamados de seus elementos.

Esses conjuntos podem ser representados por meio de um diagrama.



Fonte:https://brasilescola.uol.com.br/matematica/diagrama-de-venn.htm

1.1 RELAÇÃO ENTRE OBJETO E CONJUNTO

Se um objeto x goza das propriedades ou satisfaz as condições do conjunto A, dizemos então que x pertence a A. Usaremos a seguinte notação:

 $x \in A$

Embora se, um objeto x não satisfaz as condições e/ou não goza das propriedades de A, dizemos então que x não pertence a A. Usaremos a seguinte notação:

Dado um conjunto $A = \{a | a \in um \ numero \ natural \ multiplos \ de \ 3\}.$

 $A = \{0,3,6,9,...\}$, o conjunto A é um exemplo de conjunto Infinito.

Dado um conjunto $B = \{b | b \text{ \'e}divisor positivo de 6\}.$

 $B = \{1,2,3,6\}$, o conjunto B é um exemplo de conjunto Finito.

Dado um conjunto $C = \{c | c \in um \ numero \ primo \ par \}.$

 $C = \{2\}$, o conjunto C é um exemplo de conjunto Unitário.

Dado um conjunto $D = \{d | d \in um \ numero \ inteiro \ de \ d^2 = 2\}.$

 $D = \{\} ou \emptyset$, o conjunto D é um exemplo de conjunto Vazio.

Um conjunto A é igual a um conjunto B, se, e somente se, tiverem os mesmos elementos.

Se em um conjunto A, todos os elementos pertencem também a um conjunto B, dizemos que A é um subconjunto de B, ou que A está contido em B. Usamos a seguinte notação:

 $A \subset B$

Ou que B contém A

 $B \supset A$

1.2 OPERAÇÕES ENTRE CONJUNTOS

Dados os conjuntos A e B, definimos a união de A e B o conjunto formado pelos elementos de A ou de B. Denotamos a união de A e B por:

 $A \cup B$

 $x \in (A \cup B) \iff x \in A \text{ ou } x \in B$

Dados os conjuntos A e B, definimos a intersecção de A e B o conjunto formado pelos elementos de A e de B. Denotamos a intersecção de A e B por:

$$A \cap B$$

$$x \in (A \cap B) \iff x \in A \mathbf{e} \ x \in B$$

Dados os conjuntos A e B, definimos que a diferença de A e B, nessa ordem, é o conjunto formado pelos elementos que são elementos de A e não são elementos de B. Denotamos a diferença de A e B por:

$$A - B$$

$$x \in (A - B) \iff x \in A \mathbf{e} \ x \notin B$$

Dados os conjuntos A e B, com $A \subset B$, definimos que o complementar a de A em relação a B, é o conjunto formado pelos elementos que pertencem a B que não pertencem a A. O complementar deA em relação a B é denotado por:

$$C_{R}A$$

$$x \in C_B A \iff x \in B \mathbf{e} x \notin A$$

1.3 CONJUNTOS NUMÉRICOS

Temos os seguintes conjuntos numéricos:

Conjunto dos números naturais

$$\mathbb{N} = \{1, 2, 3, 4, 5, \dots\}$$

Conjuntos dos números inteiros

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

Conjunto dos números racionais

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a \ e \ b \in \mathbb{Z}, com \ b \neq 0 \right\}$$

Conjunto dos números reais

$$\mathbb{R} = \{ (\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}) \cup I \}$$

• Conjunto dos números irracionais

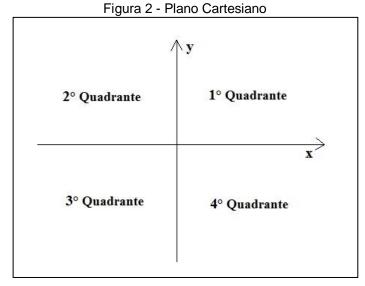
$$I = {\mathbb{R} - \mathbb{Q}}$$

2. SISTEMA CARTESIANO ORTOGONAL DE COORDENADAS

Dados dois conjuntos A e B não vazios, denominamos o produto cartesiano de A por B, indicado por $A \times B$, o conjunto cujos elementos são todos os pares ordenados (x,y), em que a primeira coordenada pertence a A e a segunda, a B.

$$A \times B = \{(x, y) \mid x \in A \ e \ y \in B\}$$

Uma maneira de representar essa relação é por meio do plano cartesiano ortogonal, que consiste em um plano com dois eixos perpendiculares, x e y. O horizontal x é denominado eixo das abscissas e o vertical y, eixo das ordenadas. Os eixos se cruzam em um ponto denominado origem. Esses eixos se dividem o plano em quatro regiões (quadrantes).



Fonte: https://www.todamateria.com.br/plano-cartesiano/

3. FUNÇÕES

Sejam os conjuntos A e B não vazios, uma relação f de A em B é uma função quando associa a cada elemento de x, pertencente ao conjunto A, um único elemento y, pertencente a B. Essa função é indicada por:

$$f: A \longrightarrow B$$

O conjunto A é denominado Dominio (D(f)) e o conjunto B, contradomínio (CD(f)) da função f. Cada elemento g de g que possui correspondente g em g é chamado imagem, g (g), de g pela função g0. Conjunto formado por todas as imagens é denominado imagem da função g0. g1.

3.1 GRÁFICO DE UMA FUNÇÃO

Para construirmos um gráfico de uma função f, indicamos em um plano cartesiano os pares (x, y), com $x \in D(f)$ e y = f(x).

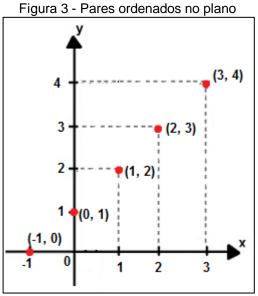
Exemplo:

Seja a função $g: \mathbb{R} \to \mathbb{R}$, definida por g(x) = x + 1

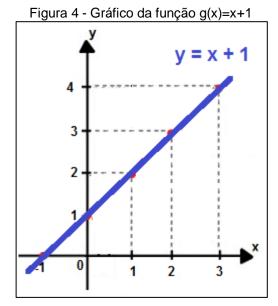
Quadro 1 - Valores que g(x) assume no ponto x

y = x + 1				
X	у	(x, y)		
$) = x + 1 \rightarrow x = -1$	0	(-1, 0)		
0	y = 0 + 1 → y = 1	(0, 1)		
1	$y = 1 + 1 \rightarrow y = 2$	(1, 2)		
2	$y = 2 + 1 \rightarrow y = 3$	(2, 3)		
3	$y = 3 + 1 \rightarrow y = 4$	(3, 4)		

Fonte:https://brasilescola.uol.com.br/matematica/como-construir-grafico-umafuncao.htm



Fonte:https://brasilescola.uol.com.br/matematica/como-construir-grafico-umafuncao.htm



1Fonte:https://brasilescola.uol.com.br/matematica/como-construir-grafico-umafuncao.htm

3.2 CLASSIFICAÇÃO DE FUNÇÕES

Uma função pode ser injetiva, pode ser sobrejetiva e quando a função é injetiva e sobrejetiva, simultaneamente, dizemos que a função é bijetiva. E temos a função inversa.

3.2.1 Função Injetora

Dizemos que uma função f é injetiva quando elementos diferentes do domínio estão associados a elementos distintos do contradomínio.

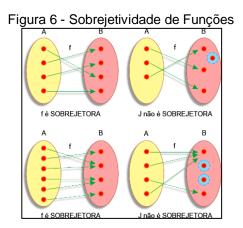
Figura 5 - Injetividade de Funções

Fonte: http://engenhariaexercicios.com.br/pre-calculo/funcoes-sobrejetoras-injetoras-e-bijetoras/

Uma função f é injetora se, e somente se, para todo $x_1 \in D(f)$ e $x_2 \in D(f)$, com $x_1 \neq x_2$, tivermos $f(x_1) \neq f(x_2)$.

3.2.2 Função sobrejetora

Dizemos que uma função é sobrejetiva quando todos os elementos do contradomínio estão associados com algum elemento do domínio. Uma função f é sobrejetora se, e somente se, para todo $y \in CD(f)$, existir um $x \in D(f)$, tal que f(x) = y.



Fonte: http://engenhariaexercicios.com.br/pre-calculo/funcoes-sobrejetoras-injetoras-e-bijetoras/

3.2.3 Função bijetora

Dizemos que uma função é bijetiva quando f é injetiva e sobrejetiva simultaneamente.

Uma função f é bijetora se, e somente se, para todo $x_1 \in D(f)$ e $x_2 \in D(f)$, com $x_1 \neq x_2$, tivermos $f(x_1) \neq f(x_2)$ e CD(f) = Im(f).

3.2.4 Função inversa

Dada uma função bijetora $f: A \to B$, dizemos que uma função $g: B \to A$ é inversa de f se, para todo $a \in A$ e $b \in B$ tal que f(a) = b tem-se que g(b) = a. Em geral, indicamos a função inversa de f por f^{-1} , ou seja:

$$f^{-1} = g$$

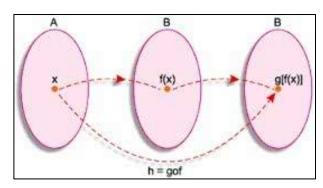
3.2.5 Função composta

Dada uma função $f(f:A \to B)$ e uma função $g(g:B \to C)$, a função composta de g com f é representada por gof. Já a função composta de f com g é representada por fog.

$$fog(x) = f(g(x))$$

 $gof(x) = g(f(x))$

Figura 7 - Diagrama de Função Composta



Equação 2Fonte: https://www.todamateria.com.br/funcao-composta/

Note que nas funções compostas as operações entre as funções não são comutativas. Ou seja, $f \circ g \neq g \circ f$.

Assim, para resolver uma função composta aplica-se uma função no domínio de outra função. E, substitui-se a variável *x* por uma função.

3.3 FUNÇÃO AFIM

Uma função $f: \mathbb{R} \to \mathbb{R}$, que a todo número $x \in \mathbb{R}$ associa o número ax + b, com $a \in b$ reais, é chamada de **função afim.**

$$x \mapsto ax + b$$

$$f(x) = ax + b$$
 ou $y = ax + b$

Dizemos que a e b são coeficientes da função f, onde a é o coeficiente angular e b coeficiente linear.

Uma função afim f(x)=ax+b, com b=0, é chamada de **função** linear.

$$x \mapsto ax$$

$$f(x) = ax \text{ ou } y = ax$$

Uma função afim f(x) = ax + b, com a = 1 e b = 0, é chamada de função identidade.

$$\chi \mapsto \chi$$

$$f(x) = x \text{ ou } y = x$$

3.3.1 Zero de uma função afim

O zero de uma função f é todo valor de x de seu domínio tal que f(x) = 0, e que graficamente, os zeros correspondem às abscissas dos pontos em que o gráfico intersecta o eixo x. Podemos obter o zero de uma função afim resolvendo a equação ax + b = 0.

3.3.2 Coeficiente de uma função afim

Em uma função afim f(x) = ax + b, o coeficiente b é chamado de **coeficiente linear.** O gráfico dessa função intersecta o eixo y no ponto de coordenada (0,b).

Uma função afim f(x) = ax + b, o coeficiente a é chamado de **coeficiente angular.** Esse coeficiente está associado à inclinação da reta que representa o gráfico da função.

3.4 FUNÇÃO QUADRÁTICA

Uma função $f: \mathbb{R} \to \mathbb{R}$, que todo número $x \in \mathbb{R}$ associa o número $ax^2 + bx + c$, com $a, b \in c$ reais, e $a \neq 0$, é denominada **função quadrática**.

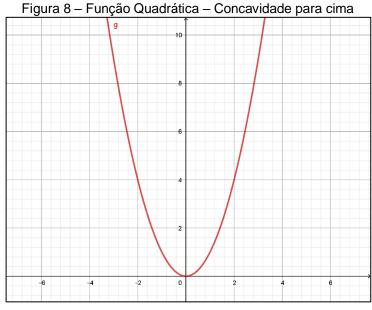
$$x \mapsto ax^2 + bx + c$$

$$f(x) = ax^2 + bx + c \text{ ou } y = ax^2 + bx + c$$

Dizemos que a, b e c são os coeficientes da função.

3.4.1 Coeficientes de uma função quadrática

Em uma função quadrática se o coeficiente a for maior que 0 (a > 0), teremos no gráfico uma parábola com concavidade voltada para cima.



Fonte: https://www.somatematica.com.br/emedio/funcao2/funcao2.php

Em uma função quadrática se o coeficiente a for menor que 0 (a < 0), teremos no gráfico uma parábola com concavidade voltada para baixo.

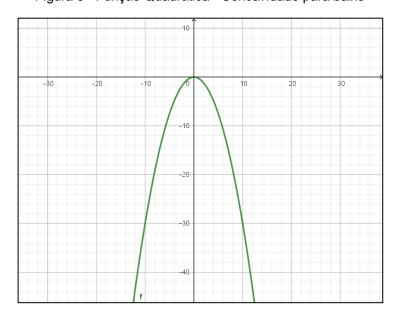


Figura 9 - Função Quadrática - Concavidade para baixo

Fonte: https://www.somatematica.com.br/emedio/funcao2/funcao2.php

3.4.2 Zeros de uma função quadrática

Para determinarmos os zeros de uma função quadrática $f(x) = ax^2 + bx + c$, faremos f(x) = 0 e resolvemos a equação do 2° grau $ax^2 + bx + c = 0$.

Essa equação pode ser resolvida utilizando a seguinte fórmula:

$$x=rac{-b\pm\sqrt{\Delta}}{2a}$$
 , na qual $\Delta=b^2-4ac$

Quando $\Delta > 0$, temos que:

• A equação $ax^2 + bx + c = 0$ possui duas raízes reais e distintas:

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} \neq x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

- A função $f(x) = ax^2 + bx + c$ possui dois zeros reais e distintos;
- A parábola relacionada a f intersecta o eixo x nos pontos de coordenadas $(x_1, 0)$ e $(x_2, 0)$.

Quando $\Delta = 0$, temos que:

• A equação $ax^2 + bx + c = 0$ possui duas raízes reais e iguais:

$$x_1 = x_2$$

- A função $f(x) = ax^2 + bx + c$ possui dois zeros reais e iguais;
- A parábola relacionada a f intersecta o eixo x em um único ponto,
 de abcissa x₁ = x₂ e ordenada 0.

Quando Δ < 0, temos que:

- A equação $ax^2 + bx + c = 0$ não possui raízes reais;
- A função $f(x) = ax^2 + bx + c$ não possui zeros reais;
- A parábola relacionada a f não intersecta o eixo x.

3.4.3 Valor máximo ou mínimo de uma função quadrática

Na função quadrática $f(x) = ax^2 + bx + c$, quando a > 0, a parábola que a representa tem concavidade voltada para cima. Portanto:

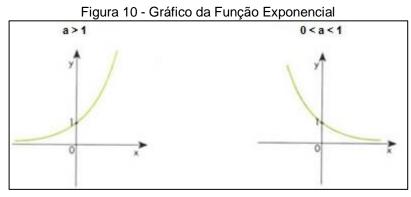
- $V(x_v, y_v)$ é o ponto de mínimo de f;
- $Y_v = -\frac{\Delta}{4a}$ corresponde ao valor mínimo de f;

Na função quadrática $f(x) = ax^2 + bx + c$, quando a < 0, a parábola que a representa tem concavidade voltada para baixo. Portanto:

- $V(x_v, y_v)$ é o ponto de máximo de f;
- $Y_{v} = -\frac{\Delta}{4a}$ corresponde ao valor máximo de f;

3.5 FUNÇÃO EXPONENCIAL

Uma função $f: \mathbb{R} \to \mathbb{R}_+^*$, definida por $f(x) = a^x$, com a > 0 e $a \neq 1$, é denominada **função exponencial.**



Fonte: https://brasilescola.uol.com.br/matematica/funcao-exponencial-1.htm

De maneira geral temos que:

• Uma função exponencial é **crescente** se a > 1. Sempre que aumentamos os valores de x, os valores correspondentes de y aumentam, isto é, $x_1 > x_2 \Leftrightarrow a^{x_1} > a^{x_2}$.

- Uma função exponencial é decrescente se 0 < a < 1. Sempre que aumentamos os valores de x, os valores correspondentes de y diminuem, isto é, x₁ > x₂ ⇔ a²₁ < a²₂.
- O gráfico de uma função exponencial é denominado curva exponencial, cruza o eixo y no ponto de coordenadas (0,1) e não cruzam o eixo x, sendo definido acima desse eixo.

3.6 FUNÇÃO LOGARÍTMICA

3.6.1. Logaritmos

Sendo a e b números reais e positivos, com $a \ne 1$, chama-se **logaritmo de b na base a**, o expoente que se deve dar à base a de modo que a potência obtida seja igual a b.

Em símbolos: se $a, b \in \mathbb{R}, 0 < a \neq 1$ e b > 0, então

$$\log_a b = x \Leftrightarrow a^x = b$$

Em $\log_a b = x$, dizemos que: a é a base, b é o logaritmando e x é o logaritmo.

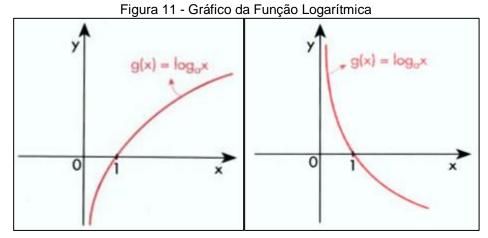
Propriedades de logaritmos

Sejam $0 < \alpha \neq 1, b > 0, c > 0, \alpha \in \mathbb{R}$ e $n \in \mathbb{N}^*$ temos:

- $\triangleright \log_a(b.c) = \log_a b + \log_a c$;
- $\triangleright \log_a(\frac{b}{c}) = \log_a b \log_a c$;
- $\geqslant \log_a \sqrt[n]{b} = \log_a b^{\frac{1}{n}} = \frac{1}{n} \log_a b.$

3.6.2. Função

Uma função $f: \mathbb{R}_+^* \to \mathbb{R}$, definida por $f(x) = \log_a x$, com a > 0 e $a \neq 1$, é denominada **função logarítmica**.



Fonte: https://brasilescola.uol.com.br/matematica/funcao-logaritmica.htm

De maneira geral temos que:

- Uma função logarítmica é **crescente** se a > 1. Sempre que aumentamos os valores de x, os valores correspondentes de y aumentam, isto é, $x_1 > x_2 \Leftrightarrow \log_a x_1 > \log_a x_2$.
- Uma função logarítmica é decrescente se 0 < a < 1. Sempre que aumentamos os valores de x, os valores correspondentes de y diminuem, isto é, x₁ > x₂ ⇔ loga x₁ < loga x₂.
- O gráfico de uma função logarítmica $y = \log_a x$, com a > 0 e $a \neq 1$, cruza o eixo x no ponto de coordenada (1,0) e não cruza o eixo y, sendo definido a direita desse eixo.

3.7 FUNÇÃO MODULAR

O valor absoluto ou módulo de um número real a, indicado por |a|, é dado pelo próprio número a, se $a \ge 0$, ou por -a, se a < 0. Em resumo:

$$|a| = \begin{cases} a, se \ a \ge 0 \\ -a, se \ a < 0 \end{cases}$$

Denomina-se função modular a função $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = |x|, isto é:

$$f(x) = \begin{cases} x, se \ x \ge 0 \\ -x, se \ x < 0 \end{cases}$$

Ao representar um módulo negativo, o gráfico para na intersecção e volta a fazer o sentido ascendente.

Isso porque tudo o que fica abaixo tem valor negativo e os módulos negativos sempre tornam-se números positivos:

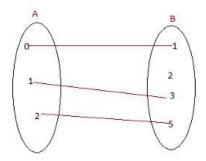
Figura 12 - Gráfico de uma Função afim

Fonte: https://www.todamateria.com.br/funcao-modular/

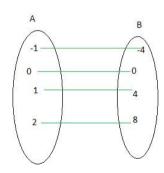
Fonte: https://www.todamateria.com.br/funcao-modular/

EXERCÍCIOS

 Analise o diagrama abaixo e determine: o domínio, o contradomínio e o conjunto imagem.



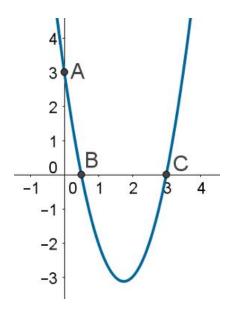
2. Defina a função abaixo e classifique-a em injetora, sobrejetora ou bijetora.



- 3. Seja a função f: D \rightarrow R dada pela lei de formação f(x) = 5x + 2, de domínio D = $\{-3, -2, -1, 0, 1, 2, 3, 4\}$. Determine o conjunto imagem dessa função.
- 4. Sejam f e g funções reais, sendo que f(x) = 4x 2 e f(g(x)) = 2x + 10. Determine a lei de formação da função g(x).
- 5. Suponha a função real g(x) = x+1 e $f(x) = x^4$. Encontre a função decorrente da composição de f(g(x)).

- 6. Uma função f é dada por f(x) = ax + b, em que a e b são números reais. Considerando que f (-1) = 3 e f (1) = -1, determine f (3).
- 7. Uma função satisfaz a relação f(2x) = 2f(x) + f(2) para qualquer valor real de x. Sabendo-se que f(4) = 6, calcule f(16).
- 8. Determine a função afim f(x) = ax + b, sabendo que f(1) = 5 e f(-3) = -7.
- 9. O gráfico da função quadrática definida por y = x² − mx + (m − 1), em que m € R, tem um único ponto em comum com o eixo das abscissas. Determine y associado ao valor de x = 2.
- Calcule o valor de k de modo que a função f(x) = 4x² 4x k não tenha raízes, isto é, o gráfico da parábola não possui ponto em comum com o eixo x.
- 11. Qual é a soma das coordenadas do vértice de uma função do segundo grau definida por $f(x) = 2x^2 + 10x + 12$?
- 12. Qual a altura máxima atingida por um projétil cuja trajetória pode ser descrita pela função: h(x) = -4x² + 5, sabendo que h é a altura do projétil e que x é a distância percorrida por ele, em metros?
- 13. Sabe-se que o custo de C para produzir x unidades de certo produto é dado pela expressão C = x² 80x + 3000. Calcule o a quantidade de unidades produzidas para que o custo seja mínimo e o valor desse custo mínimo.

14. A partir da análise das informações no gráfico a seguir, referente a uma função do segundo grau, assinale a alternativa correta.



- a) Os pontos A, B e C são as raízes da função.
- b) O ponto B é o ponto de encontro entre a função e o eixo y.
- c) O ponto C é o ponto de encontro entre a função e o eixo y.
- d) As raízes dessa função são: x = 1 e x = 3.
- e) O coeficiente "a" dessa função é positivo.
- 15. Um projétil da origem O (0,0), segundo um referencial dado, percorre uma trajetória parabólica que atinge sua altura máxima no ponto (2,4). Escreva a equação dessa trajetória.
- 16. Dadas as funções $f(x) = 2^{x^2-4} e g(x) = 4^{x^2-2x}$, se x satisfaz f(x) = g(x), então 2^x é:

17. Na função exponencial a seguir, calcule o valor de k. Considere uma função crescente.

$$g(x) = (3k + 16)^x$$

- 18. Estabeleça o domínio das funções a seguir:
- a) $y = log_3 (x \frac{1}{2})$
- b) $y = \log_{(x-1)} (-3x + 9)$
- c) $y = \log_{(x+2)}(x^2-4)$
- 19. Construa o gráfico das funções:
- a) $y = log_2 x$
- b) $y = log_{1/2} x$
- 20. Se $f(x) = x^2 + 2x e g(x) = |x^3| + 2x$, determine a composta de f com g e de g com f.
- 21. Construa o gráfico da função modular f(x) = 2 + |x 1|.

REFERÊNCIAS

BALESTRI, Rodrigo. **Matemática**: interação e tecnologia. 2. ed. São Paulo: Leya, 2016.

CHAVANTE, Eduardo. **Quadrante matemática, 1ºano**: ensino médio. São Paulo: Edições SM, 2016.

ENGENHARIA. Disponível em:< http://engenhariaexercicios.com.br/pre-calculo/funcoes-sobrejetoras-injetoras-e-bijetoras/> Acesso em: 3 de maio de 2018.

IEZZI, Gelson; DOLCE, Osvaldo; MURAKAMI, Carlos. **Fundamentos de matemática elementar:** Logaritmos. 3. ed. São Paulo: Atual Editora Ltda., 1977

SOUZA, Joamir Roberto de. **Novo Olhar**: matemática. 2. ed. São Paulo: FDT, 2013.

TODA MATÉRIA. Disponível em: https://www.todamateria.com.br/funcao-modular/ Acesso em: 1 de maio 2018.

UOL/BRASIL ESCOLA. Disponível em:< https://exercicios.brasilescola.uol.com.br/exercicios-matematica/> Acesso em: 7 de maio 2018.