Lista de Exercicíos - Nivelamento

1 Conjuntos

- 1. Sendo $A = \{1,2\}$, $B = \{2,3\}$, $C = \{1,3,4\}$ e $D = \{1,2,3,4\}$, classifique em V (verdadeiro) ou F (falso) cada sentença abaixo e justifique.
 - (a) $A \subset D$
 - (b) $A \subset B$
 - (c) $B \subset C$
 - (d) $D \supset B$
 - (e) C = D
 - (f) $A \not\subset C$
- 2. Determine o conjunto *X* tal que: $\{a, b, c, d\} \cup X = \{a, b, c, d, e\}, \{c, d\} \cup X = \{a, c, d, e\} \in \{b, c, d\} \cap X = \{c\}.$
- 3. Uma população consome três marcas de sabão em pó: A, B e C. Feita uma pesquisa de mercado, colheram-se os resultados tabelados abaixo: Forneça:

Marca	Α	В	С	AeB	BeC	CeA	A, B e C	Nenhuma das três
№ de Consumidores	109	203	162	25	41	28	5	115

- (a) O número de pessoas consultadas;
- (b) O número de pessoas que só consomem a marca A;
- (c) O número de pessoas que não consomem as marcas A ou C;

(d) O número de pessoas que consomem ao menos duas marcas.

4. Prove que $\sqrt{2} \notin \mathbb{Q}$.

5. Dados dois números x e y reais e positivos, chama-se média aritmética de x com y o real $a = \frac{x+y}{2}$ e chama-se média geométrica o real $g = \sqrt{xy}$. Mostre que $a \ge g$ para todo $x, y \in \mathbb{R}$.

2 Potenciação

1. A fração $\frac{2^{98}+4^{50}-8^{34}}{2^{99}-32^{20}+2^{101}}$ é igual a:

(a) 1

(b) $-\frac{11}{6}$

(c) 2

(d) $-\frac{5}{2}$

(e) $\frac{7}{4}$

2. Reduza a uma potência.

(a) $[(2^2)^5]$

(b) $\frac{4}{8}$

(c) $5^2 \cdot 5^5 \cdot 5^{-1}$

(d) $3^4 \cdot 9^5 \cdot (\frac{1}{3})^5$

3. Um adulto humano saudável abriga cerca de 100 bilhões de bactérias, somente em seu trato digestivo. Esse número de bactérias pode ser escrito como

(a) 10^9

(b) 10¹⁰

(c) 10^{11}

(d) 10^{12}

(e) 10^{13}

4. Simplificando a expressão $[2^9:(2^2\cdot 2)^3]^{-3}$, obtém-se:

- (a) 2^{36}
- (b) 2^{-30}
- (c) 2^{-6}
- (d) 1
- 5. O valor de $(0,2)^3 + (0,16)^2$ é:
- 6. O valor da expressão $(-1)^0 + (-6) : (-2) 2^4$ é:

3 Equações de 1º Grau

- 1. Existem três números inteiros consecutivos com soma igual a 393. Que números são esses?
- 2. Resolva as equações a seguir:
 - (a) 18x 43 = 63
 - (b) 23z 22 = 14 17z
 - (c) 10y 5(1+y) = 3(2y-2) 20
 - (d) $\frac{x-5}{10} + \frac{3x-1}{5} = \frac{6x+3}{4}$
- 3. Qual é o número que adicionado a 23 é igual a sua metade mais 7?
- 4. Determine um número real "a" para que as expressões $\frac{3a+6}{8}$ e $\frac{2a+10}{6}$ sejam iguais.
- 5. (Unicamp-SP) Roberto disse a Amanda: "Pense em um número, dobre esse número, some 12 ao resultado, divida o novo resultado por 2. Quanto deu?" Amanda disse: "15". Roberto imediatamente revelou o número original em que Amanda havia pensado. Calcule esse número.

4 Produtos Notáveis

- 1. A respeito dos produtos notáveis, assinale a alternativa correta.
 - (a) $(x+a)^2 = x^2 + a^2$
 - (b) $(x+a)^2 = x^2 + xa + a^2$

(c)
$$(x-a)^2 = x^2 - a^2$$

(d)
$$(x-a)^2 = x^2 - 2x \cdot a^2$$

(e)
$$(x-a)^2 = x^2 - 2ax + a^2$$

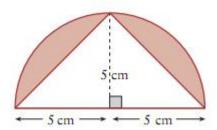
2. O resultado $y^2x^2 - 4a^2$ é obtido por meio de qual dos produtos notáveis abaixo?

(a)
$$(yx+2a)(yx-2a)$$

(b)
$$(yx + 2a)(yx + 2a)$$

(c)
$$(x+a)(y?2)$$

(d)
$$(y+a)(x+2)$$


(e)
$$(yx + 2a)^2$$

- 3. Qual o resultado de $(2a+3b)^3$?
- 4. Qual binômio resulta em $16x^2 + 40xy + 25y^2$?
- 5. (IMNEC-2004) A diferença entre o quadrado da soma e o quadrado da diferença entre dois números reais é igual a:
 - (a) diferença dos quadrados dos dois números.
 - (b) soma dos quadrados dos dois números.
 - (c) diferença dos dois números.
 - (d) ao dobro do produto dos números.
 - (e) ao quádruplo do produto dos números.

5 Perímetro, Área e Volume

- 1. Sabe-se que o perímetro de um retângulo é 60 cm e o comprimento desse retângulo é de 22 cm. Defina a largura do retângulo.
- 2. Considere um triângulo isósceles *T* cujo perímetro seja 70 cm, diminuindo 2 cm na base do triângulo e aumentando 5% nos lados de mesma medida, obtém-se outro triângulo isósceles *P* de mesmo perímetro. Quais são as dimensões dos dois triângulos?

- 3. Uma pizza tem 22 cm de raio. Na pizzaria há caixas com base quadrada com 25 cm, 30 cm, 45 cm e 50 cm. Em que caixas caberá a pizza?
- 4. Observa a figura. Determina a área da parte colorida da figura. (considere $\pi = 3, 14$).

- 5. Um cilindro possui volume igual a $7850 \, \text{cm}^3$ e seu diâmetro mede $10 \, \text{centímetros}$. Qual é a medida da altura desse cilindro? (Considere $\pi = 3, 14$).
- 6. (PM ES Exatus 2013). Determinado cubo possui volume de 729 cm³. Cada face desse cubo possui área de:

6 Regra de Três Simples e Composta

- 1. Um automóvel gasta 3h para percorrer um percurso a 80 km/h. Quanto tempo levaria para fazer o mesmo percurso a 50 km/h?
- 2. Um operário trabalhou 8 horas por dia durante 12 dias e ganhou R\$ 1000,00. Quanto teria recebido se tivesse trabalhado 10h por dia durante 15 dias?
- 3. Três pedreiros constroem 150 metros de muro com 3 metros de altura, em 5 dias, trabalhando 10 horas por dia. Determinar quantos dias serão necessários para que 5 pedreiros construam 240 metros de muro, com 1,5 metros de altura, trabalhando 8 horas por dia.
- 4. Uma usina produz 500 litros de álcool com 6 000 kg de cana?de?açúcar. Determine quantos litros de álcool são produzidos com 15 000 kg de cana.
- 5. Uma equipe de 5 professores gastou 12 dias para corrigir as provas de um vestibular. Considerando a mesma proporção, quantos dias levarão 30 professores para corrigir as provas?

Sistema de Equações Lineares

- 1. A soma de dois números naturais é 13 e a diferença entre eles é 3. Quais são esses números?
- 2. Uma senhora resolveu vender bombons e trufas na porta de uma escola para complementar a renda familiar. No primeiro dia, ela faturou R\$ 107,50 com a venda de 25 bombons e 15 trufas. No dia seguinte, seu faturamento foi igual a R\$ 185,00 e foram vendidos 20 bombons e 45 trufas. Quanto pagou um aluno que comprou, dessa senhora, 4 bombons e 3 trufas?
- 3. Num sítio existem patos e porcos, num total de 40 cabeças e 128 pés. Determine o numero de porcos nesse sítio.
- 4. Obtenha o conjunto solução dos sistemas abaixo

(a)
$$\begin{cases} x + y = 7 \\ x - y = 1 \end{cases}$$

(a)
$$\begin{cases} x+y=7\\ x-y=1 \end{cases}$$
(b)
$$\begin{cases} 3x+2y=5\\ 2x-y=1 \end{cases}$$

(c)
$$\begin{cases} x - 4y = 5 \\ 3x + y = 2 \end{cases}$$

5. (VUNESP-04) Maria tem em sua bolsa R\$15,60 em moedas de R\$ 0,10 e de R\$ 0,25. Dado que o número de moedas de 25 centavos é o dobro do número de moedas de 10 centavos, qual o total de moedas na bolsa?

8 **Matrizes**

1. Seja
$$A = (a_{ij}) = \begin{bmatrix} -7 & 2 & 15 & -6 \\ 5 & \sqrt{2} & -12 & -9 \\ \pi & -9 & -16 & 10 \end{bmatrix}$$
.

- (a) Quem é a_{11} ?
- (b) Quem é *a*₃₁?
- (c) Qual a_{ij} é igual à $\sqrt{2}$?

- (d) Qual a_{ij} é igual à a_{24} ?
- 2. Seja $A = \begin{bmatrix} 4 & -20 & 2 \\ 1 & 13 & -1 \\ \sqrt{3} & -\frac{1}{4} & -6 \end{bmatrix}$ e seja $B = \begin{bmatrix} 4 & -20 & x \\ 1 & 13 & y \\ z & -\frac{1}{4} & -6 \end{bmatrix}$. Quais devem ser os valores de x, y e z para que A seja igual a B?
- 3. Qual a soma das matrizes $A = \begin{bmatrix} -1 & 3 \\ 5 & -7 \\ -9 & 11 \\ 13 & -15 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & -2 \\ -4 & 6 \\ 8 & -10 \\ -12 & 14 \end{bmatrix}$?
- 4. Qual o resultado de $\frac{1}{3} \cdot \begin{bmatrix} -1 & -3 & e & 6 \end{bmatrix}$?
- 5. Sejam $A = \begin{bmatrix} -1 & 1 \\ 5 & -\frac{1}{4} \end{bmatrix}$ e $B = \begin{bmatrix} 3 & 4 \\ 9 & -20 \end{bmatrix}$. Calcule o produto $A \cdot B$.
- 6. Qual a transposta da matriz resultante do exercício anterior?

9 Equações de 2º Grau

- 1. A água é essencial para a vida e está presente na constituição de todos os alimentos. Em regiões com escassez de água, é comum a utilização de cisternas para a captação e armazenamento da água da chuva. Ao esvaziar um tanque contendo água da chuva, a expressão $V(t) = -\frac{1}{43200}t^2 + 3$ representa o volume (em m³) de água presente no tanque no instante t (em minutos). Qual é o tempo, em horas, necessário para que o tanque seja esvaziado?
- 2. Para evitar uma epidemia, a Secretaria de Saúde de uma cidade dedetizou todos os bairros, de modo a evitar a proliferação do mosquito da dengue. Sabe-se que o número f de infectados é dado pela função $f(t) = -2t^2 + 120t$ (em que t é expresso em dia e t=0 é o dia anterior à primeira infecção) e que tal expressão é válida para os 60 primeiros dias da epidemia. A Secretaria de Saúde decidiu que uma segunda dedetização deveria ser feita no dia em que o número de infectados chegasse à marca de 1600 pessoas, e uma segunda dedetização precisou acontecer. A segunda dedetização aconteceu em que qual dia?
- 3. Qual é a distância entre as raízes da função $f(x) = 5x^2 125$?

- 4. Determine os valores de m, para que a função $f(x) = (m-2)x^2 2x + 6$ admita raízes reais.
- 5. Um retângulo possui a largura igual ao comprimento acrescido de quatro unidades. Sabendo que o produto entre a largura e o comprimento desse retângulo menos cinco tem zero como resultado, calcule suas dimensões.

Gabarito

Conjuntos:

- 1. (a) V, pois $1 \in A, 1 \in D, 2 \in A$ e $2 \in A$
 - (b) F, pois $1 \in A$ e $1 \notin B$
 - (c) F, pois $2 \in B$ e $2 \notin C$
 - (d) V, pois $2 \in B, 2 \in D, 3 \in B$ e $3 \in D$
 - (e) F, pois $2 \in D$ e $2 \notin C$
 - (f) V, pois $2 \in A$ e $2 \notin C$
- 2. $X = \{a, c, e\}$
- 3. (a) 500
 - (b) 61
 - (c) 257
 - (d) 84
- 4. Admitamos que a fração irredutível $\frac{a}{b}$ seja tal que $\sqrt{2} = \frac{a}{b}$. Desse modo

$$\frac{a}{b} = \sqrt{2} \Longrightarrow a^2 = 2b^2 \Longrightarrow a^2$$
 é par.

tenos.
$$\frac{a}{b} = \sqrt{2} \Longrightarrow a^2 = 2b^2 \Longrightarrow a^2$$
 é par. Fazendo $a = 2m$, com $m \in \mathbb{Z}$, temos: $a^2 = 2b^2 \Longrightarrow (2m)^2 = 2b^2 \Longrightarrow b^2 = 2m^2 \Longrightarrow b^2$ é par $\Longrightarrow b$ é par e isso é absurdo, pois $mdc(a,b) = 1$.

5. Comparemos *a* e *g*:

$$a - g = \frac{x + y}{2} - \sqrt{xy} = \frac{x + y - 2\sqrt{xy}}{2} = \frac{(\sqrt{x} - \sqrt{y})^2}{2} \ge 0$$
. Então, $a \ge g$.

Potenciação:

1. Letra b

3. Letra c

2. (a) 2^{10}

4. Letra d

(b) 2^{-1}

5. 0,0336

(c) 5^6

(d) 3^9

6. -12

Equações de 1° Grau:

- 1. x = 130
- 2. (a) $x = \frac{53}{9}$
 - (b) $z = \frac{9}{10}$
 - (c) y = 21
 - (d) $x = -\frac{29}{16}$
- 3. X = -32
- 4. a = 22
- 5. X = 9

Produtos Notáveis:

- 1. e
- 2. a
- 3. $8a^3 + 36a^2b + 54ab^2 + 27b^3$
- 4. $(4x + 5y)^2$
- 5. e

Gabarito Perímetro, área e volume:

- 1. 8 cm.
- 2. Triângulo T base: 30, lado: 20 e 20 / Triângulo P base: 28, lado: 21 e 21.
- 3. Nas caixas de 45 e 50 centímetros.
- 4. 14,25 cm².
- 5. 100 cm.
- 6. 81 cm².

Regra de três:

1. tempo =
$$4.8 \text{ h}$$
.

2. Teria recebido R\$ 1562,50.

3.
$$d = 3 \text{ dias}$$
.

4. Serão produzidos 1 250 litros de álcool com 15 000 kg de cana?de?açúcar.

5. A equipe de 30 professores levará 2 dias para corrigir as provas.

Sistemas:

Matrizes:

1.
$$(a) -7$$

(b)
$$\pi$$

(d)
$$a_{32}$$

2.
$$x = 2, y = -1, z = \sqrt{3}$$

$$3. \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$$

Equações de 2°Grau:

1. 6 horas ou 360 minutos

4. (a)
$$S = \{4, 3\}$$

(b)
$$S = \{1, 1\}$$

(c)
$$S = \{1, -1\}$$

5. Maria tem 26 moedas de R\$ 0,10 e 52 moedas de R\$ 0,25. No total, Maria tem 78 moedas.

4.
$$\left[\begin{array}{cccc} -\frac{1}{3} & -1 & \frac{e}{3} & 2 \end{array} \right]$$

$$5. \left[\begin{array}{cc} 6 & -24 \\ \frac{51}{4} & 25 \end{array} \right]$$

$$6. \left[\begin{array}{cc} 6 & \frac{51}{4} \\ -24 & 25 \end{array} \right]$$

- 3. As raízes são 5 e −5. Como ambos os valores estão sobre o eixo x, não é necessário usar a fórmula da distância entre dois pontos, basta lembrar que a distância entre 5 e a origem da reta numérica (eixo x) é 5 e que a distância entre −5 e a origem também é 5. Assim, a distância entre as duas raízes da equação é igual a 10.
- 4. $m \le \frac{13}{6}$
- 5. Como x é um dos comprimentos de um retângulo, apenas x = 1 é o resultado dessa questão.